Hierarchical Modeling for Diagnostic Test Accuracy Using Multivariate Probability Distribution Functions
نویسندگان
چکیده
Models implemented in statistical software for the precision analysis of diagnostic tests include random-effects modeling (bivariate model) and hierarchical regression (hierarchical summary receiver operating characteristic). However, these models do not provide an overall mean, but calculate mean a central study when random effect is equal to zero; hence, it difficult covariance between sensitivity specificity number studies meta-analysis small. Furthermore, estimation correlation affected by included meta-analysis, or variability among analyzed studies. To model relationship test results, binary matrix assumed. Here we used copulas as alternative capture dependence specificity. The posterior values were estimated using methods that consider sampling algorithms from probability distribution (Markov chain Monte Carlo), estimates compared with results bivariate model, which assumes independence results. illustrate applicability their respective comparisons, data 14 published reporting accuracy Alcohol Use Disorder Identification Test used. Using simulations, investigated performance four copula incorporate scenarios designed replicate realistic situations meta-analyses tests. models’ performances evaluated based on p-values Cramér–von Mises goodness-of-fit test. Our indicated are valid assumptions fulfilled.
منابع مشابه
On the Concavity of Multivariate Probability Distribution Functions on the Concavity of Multivariate Probability Distribution Functions
We prove that the multivariate standard normal probability distribution function is concave for large argument values. The method of proof allows for the derivation of similar statements for other types of multivariate probability distribution functions too. The result has important application, e.g., in probabilistic constrained stochastic programming problems.
متن کاملEvaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling
One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...
متن کاملOn the concavity of multivariate probability distribution functions
We prove that the multivariate standard normal probability distribution function is concave for large argument values. The method of proof allows for the derivation of similar statements for other types of multivariate probability distribution function too. The result have important application, e.g., in probabilistic constrained stochastic programming problems.
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولAn adaptive algorithm for clustering cumulative probability distribution functions using the Kolmogorov-Smirnov two-sample test
This paper proposes an adaptive algorithm for clustering cumulative probability distribution functions (c.p.d.f.) of a continuous random variable, observed in different populations, into the minimum homogeneous clusters, making no parametric assumptions about the c.p.d.f.’s. The distance function for clustering c.p.d.f.’s that is proposed is based on the KolmogorovSmirnov two sample statistic. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math9111310